Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Procedure for Determining the Allowable Particle Contamination for Diesel Fuel Injection Equipment (FIE)

2009-04-20
2009-01-0870
Increasing injection pressures together with Diesel fuel lubricated Common Rail pumps replacing oil lubricated systems demand a more sophisticated investigation of robustness and durability against particle contamination of fuel. The established way of requiring filtration efficiency levels per lab standard is not significant enough if we look at variable factors like vibration of the fuel filter and viscosity of the fuel. Because these and other factors tremendously influence filtration efficiency, future Diesel FIE cleanliness requirements will need to define an allowable contamination limit downstream of the filter. More precisely, this is not a scalar limit but a contamination collective that considers the varying vehicle filtration and operating environment. This paper describes a procedure for defining allowable contamination limits of the FIE components. The procedure includes sensitivity, robustness and “key life” tests.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
Journal Article

Next Generation Engine Start/Stop Systems: “Free-Wheeling”

2011-04-12
2011-01-0712
Engine Start/Stop systems reduce CO₂ emissions by turning off the combustion engine at vehicle standstill. This avoids the injection of fuel that would otherwise be needed simply to overcome internal combustion engine losses. As a next development step, engine losses at higher vehicle speeds are to be addressed. During deceleration, state-of-the-art engine technology turns off fuel injection as soon as the driver releases the gas pedal, thus the combustion engine is motored by the vehicle. The engine's drag torque could be desired by the driver, e.g., as a brake assist during downhill driving. However, quite frequently the driver wishes to coast at almost constant speed. Similar to Start/Stop operation, in such situations fuel is injected to simply overcome the combustion engine's drag torque. An operation mode referred to as "Free-Wheeling" reduces CO₂ emissions under such coasting conditions by disconnecting the combustion engine from the powertrain and by turning it off.
Technical Paper

New Approaches to Electronic Throttle Control

1991-02-01
910085
An electronic control of throttle angle is required for safety systems like traction control (ASR) and for advanced engine management systems with regard to further improvements of driving comfort and fuel economy. For applications, in which only ASR is required, two versions of a new traction control actuator (TCA) have been developed. Their function is based on controlling the effective length of the bowden cable between the accelerator pedal and the throttle. Besides retaining the mechanical linkage to the throttle, the concept has no need for a pedal position sensor, which is necessary for a drive-by-wire system. Design and performance of both actuators are described and their individual advantages are compared. Moreover, the communication of the system with ASR and its behaviour with regard to vehicle dynamics are illustrated.
Technical Paper

Electronically Controlled High Pressure Unit Injector System for Diesel Engines

1991-09-01
911819
To achieve the future emissions regulations with low particulate and Nox levels, both the engine combustion system and the fuel injection equipment will have to be improved. For the fuel injection equipment, high injection pressure and variable injection timing as a function of engine speed, load, and temperature are of great importance. BOSCH is developing two different solutions: electronically controlled unit injector and single cylinder pump systems, high-pressure inline pumps with control sleeve and electronic control. This paper describes: the unit injector and its high-pressure solenoid valve the requirements for the mounting of the unit injector in the engine the low-pressure system the electronic control unit and the metering strategy
Technical Paper

eFMI (FMI for Embedded Systems) in AUTOSAR for Next Generation Automotive Software Development

2021-09-22
2021-26-0048
Nowadays automobiles are getting smart and there is a growing need for the physical behavior to become part of its software. This behavior can be described in a compact form by differential equations obtained from modeling and simulation tools. In the offline simulation domain the Functional Mockup Interface (FMI) [3], a popular standard today supported by many tools, allows to integrate a model with solver (Co-Simulation FMU) into another simulation environment. These models cannot be directly integrated into embedded automotive software due to special restrictions with respect to hard real-time constraints and MISRA compliance. Another architectural restriction is organizing software components according to the AUTOSAR standard which is typically not supported by the physical modeling tools. On the other hand AUTOSAR generating tools do not have the required advanced symbolic and numerical features to process differential equations.
Journal Article

A Representative Testing Methodology for System Influence on Automotive Fuel Filtration

2013-04-08
2013-01-0891
Filtration of diesel and gasoline fuel in automotive applications is affected by many external and internal parameters, e.g. vibration, temperature, pressure, flow pulsation, and engine start-stop. Current test procedures for automotive fuel filters, proposed by most of the researchers and organizations including Society for Automotive Engineers (SAE) and International Organization for Standardization (ISO), do not apply the previously mentioned real-world-conditions. These operating conditions, which are typical for an automotive fueling system, have a significant effect on fuel filtration and need to be considered for the accurate assessment of the filter. This requires the development of improved testing procedures that will simulate the operating conditions in a fuel system as encountered in the real world.
Journal Article

Novel Transient Wall Heat Transfer Approach for the Start-up of SI Engines with Gasoline Direct Injection

2010-04-12
2010-01-1270
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions limits require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. But with a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

VDC Systems Development and Perspective

1998-02-23
980235
Since its introduction in March 1995, the market demand for Vehicle Dynamic Control systems (VDC) has increased rapidly. Some car manufacturers have already announced their plans to introduce VDC on all their models. Particularly for compact and subcompact cars the system price needs to be reduced without sacrificing safety and performance. Originally designed for optimal performance with economically feasible components (sensors, hydraulics and microcontrollers) and using a unified control approach for all vehicle operating situations the system has been extended to include various drive concepts and has continuously been improved regarding performance, safety and cost. This paper describes the progress made in the development of the Bosch VDC system with regard to the design of the hydraulic system, the sensors, the electronic control unit, the control algorithm and safety.
Technical Paper

GDI: Interaction Between Mixture Preparation, Combustion System and Injector Performance

1998-02-23
980498
The development of future engine generations for Gasoline Direct Injection requires sophisticated combustion systems to reach reduced fuel consumption and future emission standards. The design process of these combustion systems has to be based on a fundamental knowledge of the interacting mixture preparation mechanisms. Beside the air motion inside the cylinder mixture preparation is mainly feeded by the fuel spray quality, injector performance respectively. The article therefore presents a fundamental analysis of the GDI mixture preparation and affords an insight into the injector development. Comprehensive experimental studies were performed in high pressure/temperature vessels using Phase Doppler Anemometry, Laser Induced Fluorescence and video techniques to define the significant fuel spray features for GDI. CFD-calculations were additionally applied to study the temporal behavior of the mixture preparation under injection parameter variation.
Technical Paper

Methods of On-Board Misfire Detection

1990-02-01
900232
Misfiring of the engine can cause damage to the catalyst within short time and increase emissions. Under misfiring conditions, unburned fuel and oxygen are pumped into the catalyst, where its combustion heavily increases the temperature. For this reason there is a demand for fast detection of misfiring. Once judged, one can take countermeasures to avoid further temperature rise. Two methods of misfire detection with the prospect of future use in series production are discussed. A first approach uses the trace shape of the λ-sensor signal for evaluation. The second approach uses the speed fluctuations of the engine for detection. Efficient algorithms give the possibility of misfire detection in the full load-speed range with reasonable effort to protect the catalyst. However there will remain some misfire conditions, increasing the emissions above regulation limits, that cannot be detected by those methods.
Technical Paper

ASR-Traction Control, State of the Art and Some Prospects

1990-02-01
900204
Closed loop vehicle control comprising of the driver, the vehicle and the environment is now achieved by the automatic wheel slip control combination of ABS and ASR. To improve directional control during acceleration, the Robert Bosch Corporation has introduced five ASR-Systems into series production. In one system, the electronic control unit works exclusively with the engine management system to assure directional control. In two other systems, brake intervention works in concert with throttle intervention. For this task, it was necessary to develop different highly sophisticated hydraulic units. The other systems improve traction by controlling limited slip differentials. The safety concept for all five systems includes two redundant micro controllers which crosscheck and compare input and output signals. A Traction Control System can be achieved through a number of torque intervention methods.
Technical Paper

Crank Angle Resolved Determination of Fuel Concentration and Air/Fuel Ratio in a SI-Internal Combustion Engine Using a Modified Optical Spark Plug

2007-04-16
2007-01-0644
A fiber optical sensor system was used to detect the local fuel concentration in the vicinity of the spark position in a cylinder of a four-stroke SI production engine. The fuel concentration was determined by the infrared absorption method, which allows crank angle resolved fuel concentration measurements during multiple successive engine cycles. The sensor detects the attenuation of infrared radiation in the 3.4 μm wavelength region due to the infrared vibrational-rotational absorption band of hydrocarbons (HC). The absorption path was integrated in a modified spark plug and a tungsten halide lamp was used as an infrared light source. All investigations were carried out on a four-stroke spark ignition engine with fuel injection into the intake manifold. The measurements were made under starting conditions of the engine, which means a low engine speed. The engine operated with common gasoline (Euro Super) at different air/fuel-ratios.
Technical Paper

Simulation Tool Chain for the Estimation of EMC Characteristics of ECU Modules

2007-04-16
2007-01-1591
Electromagnetic Compatibility (EMC) requirements and the effort to fulfill them are increasing steadily in automotive applications. This paper demonstrates the usage of virtual prototyping to efficiently investigate the EMC behavior of a gasoline direct injection system. While the system worked functionally as designed, tests indicated that current and especially future client-specific EMC limits could not be met. The goal of this investigation was to identify and eliminate the cause of EMC emissions using a virtual software prototype including the controller ASIC, boost converter, pi filter, injection valves and wire harness. Applying virtual prototyping techniques it was possible to capture the motor control system in a simulation model which reproduced EMC measurements in the frequency ranges of interest.
Technical Paper

Cartronic-An Ordering Concept for Future Vehicle Control Systems

1998-10-19
98C011
The continuously increasing performance of modern automotive microelectronics is leading to ever more complex open and closed-loop control functions. Rigid mechanical connections a broken down and electronics applied to make them controllable. Among the examples are camshaft control, or future systems for variable valve-lift control. In addition, the individual systems in the vehicle, such as engine management, transmission-shift control, and ABSR will be networked with one another. The result is a system alliance which communicates through a car-wide web. The major challenge posed by this development in the future, lies in still being able to reliably control the complexity of the system alliance from the point of view of reliability and safety. This means that the suitable sensor and actuator basis, together with an architecture having fixed configuration rulings and matching development methods, are indispensable.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

Bosch System Solutions for Reduction of CO2 and Emissions

2008-01-09
2008-28-0005
For about 20 years now, legislation for emission standards has become more and more strict. Main current standards are LEVII legislation for US- and EU4 for the European Market. Many emerging markets like e.g. China, India, Russia adopt EU regulations (directly or modified. Mid of 90's discussions began on restrictions and legislation for CO2 emissions. The European commission recently proposed concrete legislation standards for 2012 and 2020. These will have strong influence on the strategies of the Car Manufacturers. Single measures like start stop will be of general interest. But for reaching the fleet average combinations of measures in a single engine configuration will be necessary. Bosch system solutions for engine- and power-train management are available for the whole span of world car segments, ranging from value concepts optimized for emerging markets up to high feature solutions for most stringent requirements world wide.
Technical Paper

Model Based Top Down Process for Automotive E/E-Architecture Development

2008-04-14
2008-01-0284
Model based architecture methods for designing and optimizing electrical and electronic systems of vehicles are becoming more and more popular. However, there is still no standard on the models which are vital for design and description of architectures. Most methods and tools begin with a functional abstraction. The functional elements are mapped to electronic control units [ECU] which are connected through bus systems and supplied with electrical power via clamps. An open, unanswered question is the determination of specific control unit numbers and location in a vehicle platform. To do so, a new model layer is proposed: the “technological model” with so called “technological building blocks”. It sits in-between the “functional model” and the “communication model” and describes the necessary constraints for designing the optimum number and position for electronic control units.
Technical Paper

Investigation into the Formation and Prevention of Internal Diesel Injector Deposits

2008-04-14
2008-01-0926
1 High precision high pressure diesel common rail fuel injection systems play a key role in emission control, fuel consumption and driving performance. Deposits have been observed on internal injector components, for example in the armature assembly, in the slots of the piston and on the nozzle needle. The brownish to colourless deposits can adversely impact driveability and result in non-compliance with the Euro 4 or Euro 5 emission limits. The deposits have been extensively studied to understand their composition and their formation mechanism. Due to the location of these deposits, the influence of combustion gas can be completely ruled out. In fact, their formation can be explained by interactions of certain diesel fuel additives, including di- and mono-fatty acids. This paper describes the methodology used and the data generated that support the proposed mechanisms. Moreover, approaches to avoid such interactions are discussed.
X